DIKUL - logo
E-resources
Peer reviewed Open access
  • IGR J16393-4643: a new heav...
    Bodaghee, A.; Walter, R.; Zurita Heras, J. A.; Bird, A. J.; Courvoisier, T. J.-L.; Malizia, A.; Terrier, R.; Ubertini, P.

    Astronomy and astrophysics (Berlin), 03/2006, Volume: 447, Issue: 3
    Journal Article

    An analysis of the high-energy emission from IGR J16393-4643 (=AX J1639.0-4642) is presented using data from INTEGRAL and XMM-Newton. The source is persistent in the 20–40 keV band at an average flux of $5.1\times10^{-11}$ erg cm-2 s-1, with variations in intensity by at least an order of magnitude. A pulse period of 912.0±0.1 s was discovered in the ISGRI and EPIC light curves. The source spectrum is a strongly-absorbed ($N_{\mathrm{H}}=(2.5\pm0.2)\times10^{23}$ cm-2) power law that features a high-energy cutoff above 10 keV. Two iron emission lines at 6.4 and 7.1 keV, an iron absorption edge ≳7.1 keV, and a soft excess emission of $7\times10^{-15}$ erg cm-2 s-1 between 0.5–2 keV, are detected in the EPIC spectrum. The shape of the spectrum does not change with the pulse. Its persistence, pulsation, and spectrum place IGR J16393-4643 among the class of heavily-absorbed HMXBs. The improved position from EPIC is RA (J2000$)=16^{\mathrm{h}}39^{\mathrm{m}}05.4^{\mathrm{s}}$ and $\rm Dec=-46^{\circ}42'12''$ ($4''$ uncertainty) which is compatible with that of 2MASS J16390535-4642137.