DIKUL - logo
E-resources
Peer reviewed Open access
  • Protein assemblies ejected ...
    Chorev, Dror S; Baker, Lindsay A; Wu, Di; Beilsten-Edmands, Victoria; Rouse, Sarah L; Zeev-Ben-Mordehai, Tzviya; Jiko, Chimari; Samsudin, Firdaus; Gerle, Christoph; Khalid, Syma; Stewart, Alastair G; Matthews, Stephen J; Grünewald, Kay; Robinson, Carol V

    Science (American Association for the Advancement of Science), 11/2018, Volume: 362, Issue: 6416
    Journal Article

    Membrane proteins reside in lipid bilayers and are typically extracted from this environment for study, which often compromises their integrity. In this work, we ejected intact assemblies from membranes, without chemical disruption, and used mass spectrometry to define their composition. From outer membranes, we identified a chaperone-porin association and lipid interactions in the β-barrel assembly machinery. We observed efflux pumps bridging inner and outer membranes, and from inner membranes we identified a pentameric pore of TonB, as well as the protein-conducting channel SecYEG in association with F F adenosine triphosphate (ATP) synthase. Intact mitochondrial membranes from yielded respiratory complexes and fatty acid-bound dimers of the ADP (adenosine diphosphate)/ATP translocase (ANT-1). These results highlight the importance of native membrane environments for retaining small-molecule binding, subunit interactions, and associated chaperones of the membrane proteome.