DIKUL - logo
E-resources
Peer reviewed Open access
  • Migratory functionalization...
    Zhu, Chuan; Liu, Ze-Yao; Tang, Luning; Zhang, Heng; Zhang, Yu-Feng; Walsh, Patrick J.; Feng, Chao

    Nature communications, 09/2020, Volume: 11, Issue: 1
    Journal Article

    Abstract Despite remarkable recent advances in transition-metal-catalyzed C(sp 3 )−C cross-coupling reactions, there remain challenging bond formations. One class of such reactions include the formation of tertiary -C(sp 3 )−C bonds, presumably due to unfavorable steric interactions and competing isomerizations of tertiary alkyl metal intermediates. Reported herein is a Ni-catalyzed migratory 3,3-difluoroallylation of unactivated alkyl bromides at remote tertiary centers. This approach enables the facile construction of otherwise difficult to prepare all-carbon quaternary centers. Key to the success of this transformation is an unusual remote functionalization via chain walking to the most sterically hindered tertiary C(sp 3 ) center of the substrate. Preliminary mechanistic and radical trapping studies with primary alkyl bromides suggest a unique mode of tertiary C-radical generation through chain-walking followed by Ni–C bond homolysis. This strategy is complementary to the existing coupling protocols with tert -alkyl organometallic or -alkyl halide reagents, and it enables the expedient formation of quaternary centers from easily available starting materials.