DIKUL - logo
E-resources
Full text
Peer reviewed Open access
  • Biomimetic SARS-CoV‑2 Spike...
    Phan, Alvin; Avila, Hugo; MacKay, J. Andrew

    Biomacromolecules, 05/2023, Volume: 24, Issue: 5
    Journal Article

    COVID-19 is an infectious respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus contains a crucial coat protein that engages with target cells via a receptor binding domain (RBD) on its spike protein. To better study the RBD and its therapeutic opportunities, we genetically engineered a simple fusion with a thermo-responsive elastin-like polypeptide (ELP). These fusions express in Escherichia coli at a high yield in the soluble fraction and were easily purified using ELP-mediated phase separation (79 mg/L culture). Interestingly, they assembled peptide-based nanoparticles (R h = 71.4 nm), which was attributed to oligomerization of RBDs (25.3 kDa) counterbalanced by steric stabilization by a soluble ELP (73.4 kDa). To investigate their biophysical properties, we explored the size, shape, and binding affinity for the human angiotensin-converting enzyme 2 (hACE2) and cellular uptake. Biomimetic nanoparticles such as these may enable future strategies to target the same cells, tissues, and cell–surface receptors as those harnessed by SARS-CoV-2.