DIKUL - logo
E-resources
Peer reviewed Open access
  • Ultralow thermal conductivi...
    Lee, Woochul; Li, Huashan; Wong, Andrew B.; Zhang, Dandan; Lai, Minliang; Yu, Yi; Kong, Qiao; Lin, Elbert; Urban, Jeffrey J.; Grossman, Jeffrey C.; Yang, Peidong

    Proceedings of the National Academy of Sciences - PNAS, 08/2017, Volume: 114, Issue: 33
    Journal Article

    Controlling the flow of thermal energy is crucial to numerous applications ranging from microelectronic devices to energy storage and energy conversion devices. Here, we report ultralow lattice thermal conductivities of solution-synthesized, single-crystalline all-inorganic halide perovskite nanowires composed of CsPbI₃ (0.45 ± 0.05 W·m−1·K−1), CsPbBr₃ (0.42 ± 0.04 W·m−1·K−1), and CsSnI₃ (0.38 ± 0.04 W·m−1·K−1). We attribute this ultralow thermal conductivity to the cluster rattling mechanism, wherein strong optical–acoustic phonon scatterings are driven by a mixture of 0D/1D/2D collective motions. Remarkably, CsSnI₃ possesses a rare combination of ultralow thermal conductivity, high electrical conductivity (282 S·cm−1), and high hole mobility (394 cm²·V−1·s−1). The unique thermal transport properties in all-inorganic halide perovskites hold promise for diverse applications such as phononic and thermoelectric devices. Furthermore, the insights obtained from this work suggest an opportunity to discover low thermal conductivity materials among unexplored inorganic crystals beyond caged and layered structures.