DIKUL - logo
E-resources
Full text
Peer reviewed
  • Enhanced visible light phot...
    Beranek, Radim; Macak, Jan M.; Gärtner, Marc; Meyer, Karsten; Schmuki, Patrik

    Electrochimica acta, 2009, Volume: 54, Issue: 9
    Journal Article

    Photoelectrodes consisting of TiO 2 nanotube layers with different thicknesses (0.5 μm, 1.7 μm, 3 μm, 6 μm, 9 μm, and 18 μm) were prepared by anodization of titanium substrates and subsequent surface modification by a heat treatment at 400 °C in the presence of urea pyrolysis products. In contrast to unmodified TiO 2 nanotubes, the modified photoelectrodes exhibit photocurrents under visible light irradiation down to 750 nm. Photocurrent transients indicate enhanced recombination unless a suitable hole-scavenger, like iodide, is present since the photogenerated holes do not oxidize water efficiently. In the visible light the photoconversion efficiency increases significantly with nanotube length. The maximum incident photon-to-current efficiency (IPCE) was observed for tubes with the length of 6–9 μm (IPCE ∼4.5% and 1.4% at 450 nm and 550 nm, respectively) and the photocurrent enhancement with increasing tube length is found to be stronger at longer irradiations wavelengths.