DIKUL - logo
E-viri
Celotno besedilo
Recenzirano
  • Kim, Hong Mi; Chae, Won-Pyo; Chang, Ki-Whan; Chun, Sungsu; Kim, Sukyoung; Jeong, Yongsoo; Kang, Inn-Kyu

    Journal of biomedical materials research. Part B, Applied biomaterials, August 2010, Letnik: 94, Številka: 2
    Journal Article

    Composite nanofiber mats (HA/TiO2) consisting of hydroxyapatite (HA) and titania (TiO2) were fabricated via an electrospinning technique and then collagen (type I) was immobilized on the surface of the HA/TiO2 composite nanofiber mat to improve tissue compatibility. The structure and morphology of the collagen-immobilized composite nanofiber mat (HA/TiO2-col) was investigated using an X-ray diffractometer, electron spectroscopy for chemical analysis, and scanning electron microscope. The potential of the HA/TiO2-col composite nanofiber mat for use as a bone scaffold was assessed by an experiment with osteoblastic cells (MC3T3-E1) in terms of cell adhesion, proliferation, and differentiation. The results showed that the HA/TiO2-col composite nanofiber mats possess better cell adhesion and significantly higher proliferation and differentiation than untreated HA/TiO2 composite nanofiber mats. This result suggests that the HA/TiO2-col composite nanofiber mat has a high-potential for use in the field of bone regeneration and tissue engineering.