DIKUL - logo
E-viri
Recenzirano Odprti dostop
  • The Free Fatty Acid Recepto...
    Wauquier, Fabien; Philippe, Claire; Léotoing, Laurent; Mercier, Sylvie; Davicco, Marie-Jeanne; Lebecque, Patrice; Guicheux, Jérôme; Pilet, Paul; Miot-Noirault, Elisabeth; Poitout, Vincent; Alquier, Thierry; Coxam, Véronique; Wittrant, Yohann

    The Journal of biological chemistry, 03/2013, Letnik: 288, Številka: 9
    Journal Article

    The mechanisms linking fat intake to bone loss remain unclear. By demonstrating the expression of the free fatty acid receptor G-coupled protein receptor 40 (GPR40) in bone cells, we hypothesized that this receptor may play a role in mediating the effects of fatty acids on bone remodeling. Using micro-CT analysis, we showed that GPR40−/− mice exhibit osteoporotic features suggesting a positive role of GPR40 on bone density. In primary cultures of bone marrow, we showed that GW9508, a GRP40 agonist, abolished bone-resorbing cell differentiation. This alteration of the receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation occurred via the inhibition of the nuclear factor κB (NF-κB) signaling pathway as demonstrated by decrease in gene reporter activity, inhibitor of κB kinase (IKKα/β) activation, inhibitor of κB (IkBα) phosphorylation, and nuclear factor of activated T cells 1 (NFATc1) expression. The GPR40-dependent effect of GW9508 was confirmed using shRNA interference in osteoclast precursors and GPR40−/− primary cell cultures. In addition, in vivo administration of GW9508 counteracted ovariectomy-induced bone loss in wild-type but not GPR40−/− mice, enlightening the obligatory role of the GPR40 receptor. Then, in a context of growing prevalence of metabolic and age-related bone disorders, our results demonstrate for the first time in translational approaches that GPR40 is a relevant target for the design of new nutritional and therapeutic strategies to counter bone complications. Background: Long chain fatty acids have been shown to activate the membrane-bound receptor GPR40. Results: GPR40 agonist alters bone-resorbing cell differentiation through inhibition of the NF-κB system. Conclusion: GPR40 exerts protective effects in vivo on bone tissue. Significance: GPR40 is a nutritional and therapeutic target opening up new avenues for clinical investigations in terms of metabolic and age-related bone disorders.