DIKUL - logo
E-viri
Recenzirano Odprti dostop
  • Land Subsidence Response to...
    Zhou, Chaofan; Gong, Huili; Chen, Beibei; Gao, Mingliang; Cao, Qun; Cao, Jin; Duan, Li; Zuo, Junjie; Shi, Min

    Remote sensing (Basel, Switzerland), 02/2020, Letnik: 12, Številka: 3
    Journal Article

    The long-term overexploitation of groundwater leads to serious land subsidence and threatens the safety of Beijing-Tianjin-Hebei (BTH). In this paper, an interferometric point target analysis (IPTA) with small baseline subset InSAR (SBAS-InSAR) technique was used to derive the land subsidence in a typical BTH area from 2012 to 2018 with 126 Radarsat-2 and 184 Sentinel-1 images. The analysis reveals that the average subsidence rate reached 118 mm/year from 2012 to 2018. Eleven subsidence features were identified: Shangzhuang, Beijing Airport, Jinzhan and Heizhuanghu in Beijing, Guangyang and Shengfang in Langfang, Wangqingtuo in Tianjin, Dongguang in Cangzhou, Jingxian and Zaoqiang in Hengshui and Julu in Xingtai. Comparing the different types of land use in subsidence feature areas, the results show that when the land-use type is relatively more complex and superimposed with residential, industrial and agricultural land, the land subsidence is relatively more significant. Moreover, the land subsidence development patterns are different in the BTH areas because of the different methods adopted for their water resource development and utilization, with an imbalance in their economic development levels. Finally, we found that the subsidence changes are consistent with groundwater level changes and there is a lag period between land subsidence and groundwater level changes of approximately two months in Beijing Airport, Jinzhan, Jingxian and Zaoqiang, of three months in Shangzhuang, Heizhuanghu, Guangyang, Wangqingtuo and Dongguang and of four months in Shengfang.