DIKUL - logo
E-viri
Recenzirano Odprti dostop
  • Anthropogenic pressures coi...
    Doré, Maël; Willmott, Keith; Leroy, Boris; Chazot, Nicolas; Mallet, James; Freitas, André V. L.; Hall, Jason P. W.; Lamas, Gerardo; Dasmahapatra, Kanchon K.; Fontaine, Colin; Elias, Marianne

    Diversity & distributions, December 2022, Letnik: 28, Številka: 12
    Journal Article

    Aim The biodiversity crisis has highlighted the need to assess and map biodiversity in order to prioritize conservation efforts. Clearwing butterflies (tribe Ithomiini) have been proposed as biological indicators for habitat quality in Neotropical forests, which contain the world's richest biological communities. Here, we provide maps of different facets of Ithomiini diversity across the Neotropics to identify areas of evolutionary and ecological importance for conservation and evaluate their overlap with current anthropogenic threats. Location Neotropics. Methods We ran species distribution models on a data set based on 28,986 georeferenced occurrences representing 388 ithomiine species to generate maps of geographic rarity, taxonomic, phylogenetic and Müllerian mimetic wing pattern diversity. We quantified and mapped the overlap of diversity hotspots with areas threatened by or providing refuge from current anthropogenic pressures. Results The eastern slopes of the Andes formed the primary hotspot of taxonomic, phylogenetic and mimetic diversity, with secondary hotspots in Central America and the Atlantic Forest. Most diversity indices were strongly spatially correlated. Nevertheless, species‐poor communities on the Pacific slopes of the Andes also sheltered some of the geographically rarest species. Overall, tropical montane forests that host high species and mimetic diversity as well as rare species and mimicry rings appeared particularly under threat. Main conclusions Remote parts of the Upper Amazon may act as refuges against current anthropogenic pressures for a limited portion of Ithomiini diversity. Furthermore, it is likely that the current threat status may worsen with ongoing climate change and deforestation. In this context, the tropical Andes occupy a crucial position as the primary hotspot for multiple facets of biodiversity for ithomiine butterflies, as they do for angiosperms, tetrapods and other insect taxa. Our results support the role of ithomiine butterflies as a suitable flagship indicator group for Neotropical butterfly diversity and reinforce the position of the tropical Andes as a flagship region for biodiversity conservation in general, and insect and butterfly conservation in particular.