DIKUL - logo
E-viri
Celotno besedilo
Recenzirano
  • Materials Processing Routes...
    Buin, Andrei; Pietsch, Patrick; Xu, Jixian; Voznyy, Oleksandr; Ip, Alexander H; Comin, Riccardo; Sargent, Edward H

    Nano letters, 11/2014, Letnik: 14, Številka: 11
    Journal Article

    Photovoltaic devices based on lead iodide perovskite films have seen rapid advancements, recently achieving an impressive 17.9% certified solar power conversion efficiency. Reports have consistently emphasized that the specific choice of growth conditions and chemical precursors is central to achieving superior performance from these materials; yet the roles and mechanisms underlying the selection of materials processing route is poorly understood. Here we show that films grown under iodine-rich conditions are prone to a high density of deep electronic traps (recombination centers), while the use of a chloride precursor avoids the formation of key defects (Pb atom substituted by I) responsible for short diffusion lengths and poor photovoltaic performance. Furthermore, the lowest-energy surfaces of perovskite crystals are found to be entirely trap-free, preserving both electron and hole delocalization to a remarkable degree, helping to account for explaining the success of polycrystalline perovskite films. We construct perovskite films from I-poor conditions using a lead acetate precursor, and our measurement of a long (600 ± 40 nm) diffusion length confirms this new picture of the importance of growth conditions.