DIKUL - logo
E-viri
Recenzirano Odprti dostop
  • Observations and three-dime...
    Danehkar, A; Parker, Q. A; Ercolano, B

    Monthly notices of the Royal Astronomical Society, 09/2013, Letnik: 434, Številka: 2
    Journal Article

    The planetary nebula SuWt 2 (PN G311.0+02.4) is an unusual object with a prominent, inclined central emission ellipse and faint bipolar extensions. It has two A-type stars in a proven binary system at the centre. However, the radiation from these two central stars is too soft to ionize the surrounding material leading to a so far fruitless search for the responsible ionizing source. Such a source is clearly required and has already been inferred to exist via an observed temporal variation of the centre-of-mass velocity of the A-type stars. Moreover, the ejected nebula is nitrogen rich which raises question about the mass-loss process from a likely intermediate-mass progenitor. We use optical integral-field spectroscopy to study the emission lines of the inner nebula ring. This has enabled us to perform an empirical analysis of the optical collisionally excited lines, together with a fully three-dimensional photoionization modelling. Our empirical results are used to constrain the photoionization models, which determine the evolutionary stage of the responsible ionizing source and its likely progenitor. The time-scale for the evolutionary track of a hydrogen-rich model atmosphere is inconsistent with the dynamical age obtained for the ring. This suggests that the central star has undergone a very late thermal pulse. We conclude that the ionizing star could be hydrogen deficient and compatible with what is known as a PG 1159-type star. The evolutionary tracks for the very late thermal pulse models imply a central star mass of ∼0.64 M, which originated from an ∼3 M progenitor. The evolutionary time-scales suggest that the central star left the asymptotic giant branch about 25 000 yr ago, which is consistent with the nebula's age.