DIKUL - logo
E-viri
Recenzirano Odprti dostop
  • Post-collapse perturbation ...
    Taruya, Atsushi; Colombi, Stéphane

    Monthly notices of the Royal Astronomical Society, 10/2017, Letnik: 470, Številka: 4
    Journal Article

    Abstract We develop a new perturbation theory (PT) treatment that can describe gravitational dynamics of large-scale structure after shell-crossing in the one-dimensional cosmological case. Starting with cold initial conditions, the motion of matter distribution follows at early stages the single-stream regime, which can, in one dimension, be described exactly by the first-order Lagrangian perturbation, i.e. the Zel'dovich solution. However, the single-stream flow no longer holds after shell-crossing and a proper account of the multistream flow is essential for post-collapse dynamics. In this paper, extending previous work by Colombi, we present a perturbative description for the multistream flow after shell-crossing in a cosmological setup. In addition, we introduce an adaptive smoothing scheme to deal with the bulk properties of phase-space structures. The filtering scales in this scheme are linked to the next-crossing time in the post-collapse region, estimated from our PT calculations. Our PT treatment combined with adaptive smoothing is illustrated in several cases. Predictions are compared to simulations and we find that post-collapse PT with adaptive smoothing reproduces the power spectrum and phase-space structures remarkably well even at small scales, where Zel'dovich solution substantially deviates from simulations.