DIKUL - logo
E-viri
Recenzirano Odprti dostop
  • Remapping of Greenland ice ...
    Goelzer, Heiko; Noël, Brice P. Y; Edwards, Tamsin L; Fettweis, Xavier; Gregory, Jonathan M; Lipscomb, William H; van de Wal, Roderik S. W; van den Broeke, Michiel R

    The cryosphere, 06/2020, Letnik: 14, Številka: 6
    Journal Article, Web Resource

    Future sea-level change projections with process-based stand-alone ice sheet models are typically driven with surface mass balance (SMB) forcing derived from climate models. In this work we address the problems arising from a mismatch of the modelled ice sheet geometry with the geometry used by the climate model. We present a method for applying SMB forcing from climate models to a wide range of Greenland ice sheet models with varying and temporally evolving geometries. In order to achieve that, we translate a given SMB anomaly field as a function of absolute location to a function of surface elevation for 25 regional drainage basins, which can then be applied to different modelled ice sheet geometries. The key feature of the approach is the non-locality of this remapping process. The method reproduces the original forcing data closely when remapped to the original geometry. When remapped to different modelled geometries it produces a physically meaningful forcing with smooth and continuous SMB anomalies across basin divides. The method considerably reduces non-physical biases that would arise by applying the SMB anomaly derived for the climate model geometry directly to a large range of modelled ice sheet model geometries.