DIKUL - logo
E-viri
Recenzirano Odprti dostop
  • An Alkylated Indacenodithie...
    Fei, Zhuping; Eisner, Flurin D.; Jiao, Xuechen; Azzouzi, Mohammed; Röhr, Jason A.; Han, Yang; Shahid, Munazza; Chesman, Anthony S. R.; Easton, Christopher D.; McNeill, Christopher R.; Anthopoulos, Thomas D.; Nelson, Jenny; Heeney, Martin

    Advanced materials (Weinheim), February 22, 2018, Letnik: 30, Številka: 8
    Journal Article

    A new synthetic route, to prepare an alkylated indacenodithieno3,2‐bthiophene‐based nonfullerene acceptor (C8‐ITIC), is reported. Compared to the reported ITIC with phenylalkyl side chains, the new acceptor C8‐ITIC exhibits a reduction in the optical band gap, higher absorptivity, and an increased propensity to crystallize. Accordingly, blends with the donor polymer PBDB‐T exhibit a power conversion efficiency (PCE) up to 12.4%. Further improvements in efficiency are found upon backbone fluorination of the donor polymer to afford the novel material PFBDB‐T. The resulting blend with C8‐ITIC shows an impressive PCE up to 13.2% as a result of the higher open‐circuit voltage. Electroluminescence studies demonstrate that backbone fluorination reduces the energy loss of the blends, with PFBDB‐T/C8‐ITIC‐based cells exhibiting a small energy loss of 0.6 eV combined with a high JSC of 19.6 mA cm−2. The synthesis of a novel alkylated indacenodithioeno3,2‐bthiophene (C8‐IDTT) based nonfullerene acceptor (C8‐ITIC), is reported. Compared to ITIC with phenylalkyl side chains, the acceptor exhibits a redshifted absorption with increased absorptivity. Solar cell power conversion efficiencies (PCEs) of up to 13.2 % are achieved, with the high PCE attributed to the broad absorption, high crystallinity of C8‐ITIC and low voltage loss.