DIKUL - logo
E-viri
Recenzirano Odprti dostop
  • HyperBeta: characterizing t...
    Nobile, Marco S; Fontana, Federico; Manzoni, Luca; Cazzaniga, Paolo; Mauri, Giancarlo; Saracino, Gloria A A; Besozzi, Daniela; Gelain, Fabrizio

    Scientific reports, 04/2021, Letnik: 11, Številka: 1
    Journal Article

    Self-assembling processes are ubiquitous phenomena that drive the organization and the hierarchical formation of complex molecular systems. The investigation of assembling dynamics, emerging from the interactions among biomolecules like amino-acids and polypeptides, is fundamental to determine how a mixture of simple objects can yield a complex structure at the nano-scale level. In this paper we present HyperBeta, a novel open-source software that exploits an innovative algorithm based on hyper-graphs to efficiently identify and graphically represent the dynamics of Formula: see text-sheets formation. Differently from the existing tools, HyperBeta directly manipulates data generated by means of coarse-grained molecular dynamics simulation tools (GROMACS), performed using the MARTINI force field. Coarse-grained molecular structures are visualized using HyperBeta 's proprietary real-time high-quality 3D engine, which provides a plethora of analysis tools and statistical information, controlled by means of an intuitive event-based graphical user interface. The high-quality renderer relies on a variety of visual cues to improve the readability and interpretability of distance and depth relationships between peptides. We show that HyperBeta is able to track the Formula: see text-sheets formation in coarse-grained molecular dynamics simulations, and provides a completely new and efficient mean for the investigation of the kinetics of these nano-structures. HyperBeta will therefore facilitate biotechnological and medical research where these structural elements play a crucial role, such as the development of novel high-performance biomaterials in tissue engineering, or a better comprehension of the molecular mechanisms at the basis of complex pathologies like Alzheimer's disease.