DIKUL - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Whole genome sequence analy...
    Selvaraj, Margaret Sunitha; Li, Xihao; Li, Zilin; Pampana, Akhil; Zhang, David Y; Park, Joseph; Aslibekyan, Stella; Bis, Joshua C; Brody, Jennifer A; Cade, Brian E; Chuang, Lee-Ming; Chung, Ren-Hua; Curran, Joanne E; de Las Fuentes, Lisa; de Vries, Paul S; Duggirala, Ravindranath; Freedman, Barry I; Graff, Mariaelisa; Guo, Xiuqing; Heard-Costa, Nancy; Hidalgo, Bertha; Hwu, Chii-Min; Irvin, Marguerite R; Kelly, Tanika N; Kral, Brian G; Lange, Leslie; Li, Xiaohui; Lisa, Martin; Lubitz, Steven A; Manichaikul, Ani W; Michael, Preuss; Montasser, May E; Morrison, Alanna C; Naseri, Take; O'Connell, Jeffrey R; Palmer, Nicholette D; Peyser, Patricia A; Reupena, Muagututia S; Smith, Jennifer A; Sun, Xiao; Taylor, Kent D; Tracy, Russell P; Tsai, Michael Y; Wang, Zhe; Wang, Yuxuan; Bao, Wei; Wilkins, John T; Yanek, Lisa R; Zhao, Wei; Arnett, Donna K; Blangero, John; Boerwinkle, Eric; Bowden, Donald W; Chen, Yii-Der Ida; Correa, Adolfo; Cupples, L Adrienne; Dutcher, Susan K; Ellinor, Patrick T; Fornage, Myriam; Gabriel, Stacey; Germer, Soren; Gibbs, Richard; He, Jiang; Kaplan, Robert C; Kardia, Sharon L R; Kim, Ryan; Kooperberg, Charles; Loos, Ruth J F; Viaud-Martinez, Karine A; Mathias, Rasika A; McGarvey, Stephen T; Mitchell, Braxton D; Nickerson, Deborah; North, Kari E; Psaty, Bruce M; Redline, Susan; Reiner, Alexander P; Vasan, Ramachandran S; Rich, Stephen S; Willer, Cristen; Rotter, Jerome I; Rader, Daniel J; Lin, Xihong; Peloso, Gina M; Natarajan, Pradeep

    Nature communications, 10/2022, Letnik: 13, Številka: 1
    Journal Article

    Blood lipids are heritable modifiable causal factors for coronary artery disease. Despite well-described monogenic and polygenic bases of dyslipidemia, limitations remain in discovery of lipid-associated alleles using whole genome sequencing (WGS), partly due to limited sample sizes, ancestral diversity, and interpretation of clinical significance. Among 66,329 ancestrally diverse (56% non-European) participants, we associate 428M variants from deep-coverage WGS with lipid levels; ~400M variants were not assessed in prior lipids genetic analyses. We find multiple lipid-related genes strongly associated with blood lipids through analysis of common and rare coding variants. We discover several associated rare non-coding variants, largely at Mendelian lipid genes. Notably, we observe rare LDLR intronic variants associated with markedly increased LDL-C, similar to rare LDLR exonic variants. In conclusion, we conducted a systematic whole genome scan for blood lipids expanding the alleles linked to lipids for multiple ancestries and characterize a clinically-relevant rare non-coding variant model for lipids.