DIKUL - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Contact guidance via hetero...
    Ippolito, Alberto; Deshpande, Vikram S.

    Acta biomaterialia, June 2023, 2023-06-00, 20230601, Letnik: 163
    Journal Article

    Contact guidance, the widely-known phenomenon of cell alignment, is an essential step in the organization of adherent cells. This guidance is known to occur by, amongst other things, anisotropic features in the environment including elastic heterogeneity. To understand the origins of this guidance we employed a novel statistical thermodynamics framework, which recognises the non-thermal fluctuations in the cellular response, for modelling the response of the cells seeded on substrates with alternating soft and stiff stripes. Consistent with observations, the modelling framework predicts the existence of three regimes of cell guidance: (i) in regime I for stripe widths much larger than the cell size guidance is primarily entropic; (ii) for stripe widths on the order of the cell size in regime II guidance is biochemically mediated and accompanied by changes to the cell morphology while (iii) in regime III for stripe widths much less than the cell size there is no guidance as cells cannot sense the substrate heterogeneity. Guidance in regimes I and II is due to “molli-avoidance” with cells primarily residing on the stiff stripes. While the molli-avoidance tendency is not lost with decreasing density of collagen coating the substrate, the reduced focal adhesion formation with decreasing collagen density tends to inhibit contact guidance. Our results provide clear physical insights into the interplay between cell mechano-sensitivity and substrate elastic heterogeneity that ultimately leads to the contact guidance of cells in heterogeneous tissues. Cellular morphology and organization play a crucial role in the micro-architecture of tissues and dictates their biological and mechanical functioning. Despite the importance of cellular organization in all facets of tissue biology, the fundamental question of how a cell organizes itself in an anisotropic environment is still poorly understood. We employ a novel statistical thermodynamics framework which recognises the non-thermal fluctuations in the cellular response to investigate cell guidance on substrates with alternating soft and stiff stripes. The propensity of cells to primarily reside on stiff stripes results in strong guidance when the period of the stripes is larger than the cell size. For smaller stripe periods, cells sense a homogeneous substrate and guidance is lost. Display omitted