DIKUL - logo
E-viri
Recenzirano Odprti dostop
  • Planetary formation in the ...
    Thébault, P.; Marzari, F.; Scholl, H.; Turrini, D.; Barbieri, M.

    Astronomy and astrophysics (Berlin), 12/2004, Letnik: 427, Številka: 3
    Journal Article

    We numerically investigate under which conditions the planet detected at 2.1 AU from γ Cephei could form through the core-accretion scenario despite the perturbing presence of the highly eccentric companion star. We first show that the initial stage of runaway accretion of kilometer-sized planetesimals is possible within 2.5 AU from the central star only if large amounts of gas are present. In this case, gaseous friction induces periastron alignment of the orbits which reduces the otherwise high mutual impact velocities due to the companion's secular perturbations. The following stage of mutual accretion of large embryos is also modeled. According to our simulations, the giant impacts among the embryos always lead to a core of 10 $M_{\oplus}$ within 10 Myr, the average lifetime of gaseous discs. However, the core always ends up within 1.5 AU from the central star. Either the core grows more quickly in the inner region of the disc, or it migrates inside by scattering the residual embryos.