DIKUL - logo
E-viri
Recenzirano Odprti dostop
  • The potential of chalcone-c...
    Omolaja, Akinfenwa A.; Pearce, Brendon; Omoruyi, Sylvester I.; Badmus, Jelili A.; Ismail, Enas; Marnewick, Jeanine; Botha, Subelia; Benjeddou, Mongi; Ekpo, Okobi E.; Hussein, Ahmed A.

    Surfaces and interfaces, August 2021, 2021-08-00, Letnik: 25
    Journal Article

    •Two chalcones were successfully isolated and identified from H.foetidum.•The activities of the total extract and the chalcones were explored for the bio-reduction of gold in green synthesis gold nanoparticles.•Physicochemical characterisation and stability were performed for the green synthesised gold nanoparticles in different biogenic media.•In vitro evaluation of all samples for the amelioration of diabetes was conducted. Searching for new natural bioactive capping agents represent an urgent priority in the green synthesis of metal nanoparticles. Additionaly, the biosaftey of metal nanparticles is a major concern especially in medical applications. Recently, the use of pharmacollogicaly active natural products as capping agents has been deployed to avoid toxic effects during the nanoparticles preparation and to enhance their drugability compared with convential drugs. Helichrysum foetidum is a South African medicinal plant used in folk medicine for the treatment of different human pathologies, and it is known to contain a variety of bioactive compounds. Herein, the total extract and two pure chalcones, helichrysetin and helichrysin, isolated from the same plant were successfully used to synthesize quasi-monodispersed gold nanoparticles in the size range of 2–12 nm. The bio-evaluation of samples indicated that the AuNP/capping agent conjugates are biostable, and have different biological profiles from the total extract/pure compounds. The enzymatic inhibition assays showed significant inhibition by the total extract, helichrysetin and their gold nanoparticles. Interestingly, a similar activity was observed for glucose uptake in HEK293 treated cells. On the other hand, all the tested samples relatively demonstrated no cytotoxicity when tested against the HaCaT keratinocytes. In conclusion, the study demonstrated potential enhancement of glucose uptake in mammalian kidney cells, and inhibition of carbohydrate-hydrolysing enzymes by green synthesized gold nanoparticles of H. foetidum. It also provides a therapeutic appraisal of AuNPs/chalcones conjugate towards the development of antidiabetes drugs derived from H. foetidum and its gold nanoparticles. Display omitted