DIKUL - logo
E-viri
Recenzirano Odprti dostop
  • 5-HT2C Receptor Structures ...
    Peng, Yao; McCorvy, John D.; Harpsøe, Kasper; Lansu, Katherine; Yuan, Shuguang; Popov, Petr; Qu, Lu; Pu, Mengchen; Che, Tao; Nikolajsen, Louise F.; Huang, Xi-Ping; Wu, Yiran; Shen, Ling; Bjørn-Yoshimoto, Walden E.; Ding, Kang; Wacker, Daniel; Han, Gye Won; Cheng, Jianjun; Katritch, Vsevolod; Jensen, Anders A.; Hanson, Michael A.; Zhao, Suwen; Gloriam, David E.; Roth, Bryan L.; Stevens, Raymond C.; Liu, Zhi-Jie

    Cell, 02/2018, Letnik: 172, Številka: 4
    Journal Article

    Drugs frequently require interactions with multiple targets—via a process known as polypharmacology—to achieve their therapeutic actions. Currently, drugs targeting several serotonin receptors, including the 5-HT2C receptor, are useful for treating obesity, drug abuse, and schizophrenia. The competing challenges of developing selective 5-HT2C receptor ligands or creating drugs with a defined polypharmacological profile, especially aimed at G protein-coupled receptors (GPCRs), remain extremely difficult. Here, we solved two structures of the 5-HT2C receptor in complex with the highly promiscuous agonist ergotamine and the 5-HT2A-C receptor-selective inverse agonist ritanserin at resolutions of 3.0 Å and 2.7 Å, respectively. We analyzed their respective binding poses to provide mechanistic insights into their receptor recognition and opposing pharmacological actions. This study investigates the structural basis of polypharmacology at canonical GPCRs and illustrates how understanding characteristic patterns of ligand-receptor interaction and activation may ultimately facilitate drug design at multiple GPCRs. Display omitted •Agonist ergotamine and inverse agonist ritanserin-bound 5-HT2C structures solved•Conformational changes uncover key features of two distinct ligand-bound states•Structural basis for ligand promiscuity versus subtype selectivity revealed Understanding how one drug can bind to many similar targets and have different functional outcomes will inform drug design with desired efficacy profiles.