DIKUL - logo
E-viri
Recenzirano Odprti dostop
  • Energy productivity and eff...
    Rahman, Sanzidur; Rahman, Md. Sayedur

    Energy, 01/2013, Letnik: 49, Številka: 1
    Journal Article

    The paper evaluates sustainability of maize cultivation in Bangladesh in terms of energy use while taking into account factors affecting choice of the growing season and farmers' production environment using a sample selection framework applied to stochastic frontier models. Results reveal that the probability of growing winter maize is influenced positively by gross return, irrigation, subsistence pressure, soil suitability and temperature variability whereas extension contact influences choice negatively. Significant differences exist between winter and summer maize regarding yield, specific energy, net energy balance, energy use efficiency and technical energy efficiency although both systems are highly sustainable and efficient. The energy output from winter maize is 199,585 MJ/ha which is 53.9% higher than the summer maize output of 129,701 MJ/ha. Also, energy input use of winter maize is 110.6% higher than the summer maize. Energy inputs from mechanical power, seeds, fertilizers and organic manures significantly increase energy productivity of winter maize whereas only mechanical power influences summer maize productivity. However, temperature variation and rainfall significantly reduce energy productivity of summer maize. Policy implications include investments in soil conservation and irrigation, development of weather resistant varieties and raising maize price will boost maize cultivation in Bangladesh, a highly sustainable production technology. ► Maize energy productivity is evaluated subject to season and environmental factors. ► Maize farming for both seasons is highly sustainable in terms of energy use. ► Socio-economic and environmental factors influence choice of growing winter maize. ► Mechanical power, rainfall and temperature influence summer maize productivity. ► Maize farmers of both seasons are highly technically efficient.