DIKUL - logo
E-viri
Recenzirano Odprti dostop
  • Human artificial chromosome...
    Kouprina, Natalay; Liskovykh, Mikhail; Petrov, Nikolai; Larionov, Vladimir

    Experimental cell research, 02/2020, Letnik: 387, Številka: 2
    Journal Article

    Chromosomal instability (CIN) is one of the characteristics of cancer inherent for tumor initiation and progression, which is defined as a persistent, high rate of gain/loss of whole chromosomes. In the vast majority of human tumors the molecular basis of CIN remains unknown. The development of a conceptually simple colony color sectoring assay that measures yeast artificial chromosome (YAC) loss provided a powerful genetic tool to assess the rate of chromosome mis-segregation and also identified 937 yeast genes involved in this process. Similarly, a human artificial chromosome (HAC)-based assay has been recently developed and applied to quantify chromosome mis-segregation events in human cells. This assay allowed identification of novel human CIN genes in the library of protein kinases. Among them are PINK1, TRIO, IRAK1, PNCK, and TAOK1. The HAC-based assay may be applied to screen siRNA, shRNA and CRISPR-based libraries to identify the complete spectrum of CIN genes. This will reveal new insights into mechanisms of chromosome segregation and may expedite the development of novel therapeutic strategies to target the CIN phenotype in cancer cells.