DIKUL - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Fire Intumescent, High-Temp...
    Cao, Cheng-Fei; Yu, Bin; Chen, Zuan-Yu; Qu, Yong-Xiang; Li, Yu-Tong; Shi, Yong-Qian; Ma, Zhe-Wen; Sun, Feng-Na; Pan, Qing-Hua; Tang, Long-Cheng; Song, Pingan; Wang, Hao

    Nano-micro letters, 12/2022, Letnik: 14, Številka: 1
    Journal Article

    Highlights Graphene oxide-based hybrid networks were fabricated via introducing multi-amino molecule with triple roles (i.e., cross-linker, fire retardant and reducing agent). The optimized hybrid network with mechanically robust, exceptional intumescent effect and ultra-sensitive fire alarm response (~ 0.6 s) can be used as desirable smart fire alarm sensor materials. Exceptional fire shielding performances, e.g., ~ 60% reduction in peak heat release rate and limiting oxygen index of ~ 36.5%, are achieved, when coated such hybrid network onto combustible polymer foam. Smart fire alarm sensor (FAS) materials with mechanically robust, excellent flame retardancy as well as ultra-sensitive temperature-responsive capability are highly attractive platforms for fire safety application. However, most reported FAS materials can hardly provide sensitive, continuous and reliable alarm signal output due to their undesirable temperature-responsive, flame-resistant and mechanical performances. To overcome these hurdles, herein, we utilize the multi-amino molecule, named HCPA, that can serve as triple-roles including cross-linker, fire retardant and reducing agent for decorating graphene oxide (GO) sheets and obtaining the GO/HCPA hybrid networks. Benefiting from the formation of multi-interactions in hybrid network, the optimized GO/HCPA network exhibits significant increment in mechanical strength, e.g., tensile strength and toughness increase of ~ 2.3 and ~ 5.7 times, respectively, compared to the control one. More importantly, based on P and N doping and promoting thermal reduction effect on GO network, the excellent flame retardancy (withstanding ~ 1200 °C flame attack), ultra-fast fire alarm response time (~ 0.6 s) and ultra-long alarming period (> 600 s) are obtained, representing the best comprehensive performance of GO-based FAS counterparts. Furthermore, based on GO/HCPA network, the fireproof coating is constructed and applied in polymer foam and exhibited exceptional fire shielding performance. This work provides a new idea for designing and fabricating desirable FAS materials and fireproof coatings.