DIKUL - logo
E-viri
Celotno besedilo
Recenzirano
  • Shaping of HKUST-1 via Extr...
    Rozaini, Muhamad Tahriri; Grekov, Denys I; Bustam, Mohamad Azmi; Pré, Pascaline

    Separations, 09/2023, Letnik: 10, Številka: 9
    Journal Article

    HKUST-1 is a metal-organic framework (MOF) that is widely studied as an adsorbent for COsub.2 capture because of its high adsorption capacity and good COsub.2/CHsub.4 selectivity. However, the numerous synthesis routes for HKUST-1 often result in the obtention of MOF in powder form, which limits its application in industry. Here, we report the shaping of HKUST-1 powder via the extrusion method with the usage of bio-sourced polylactic acid (PLA) as a binder. The characterization of the composite was determined by XRD, FTIR, TGA and SEM analyses. The specific surface area was determined from the Nsub.2 adsorption isotherm, whereas the gas adsorption capacities were investigated via measurements of COsub.2 and CHsub.4 isotherms of up to 10 bar at ambient temperature. The material characterization reveals that the composite preserves HKUST-1’s crystalline structure, morphology and textural properties. Furthermore, COsub.2 and CHsub.4 adsorption isotherms show that there is no degradation of gravimetric gas adsorption capacity after shaping and the composite yields a similar isosteric adsorption heat as pristine HKUST-1 powder. However, some trade-offs could be observed, as the composite exhibits a lower bulk density than pristine HKUST-1 powder and PLA has no impact on pristine HKUST-1’s moisture stability. Overall, this study demonstrates the possibility of shaping commercial HKUST-1 powder, using PLA as a binder, into a larger solid-state-form adsorbent that is suitable for the separation of COsub.2 from CHsub.4 with a well-preserved pristine MOF gas-adsorption performance.