DIKUL - logo
E-viri
Recenzirano Odprti dostop
  • The Lake Urmia environmenta...
    Hossein Mardi, Ali; Khaghani, Ali; MacDonald, Alexander B.; Nguyen, Phu; Karimi, Neamat; Heidary, Parisa; Karimi, Nima; Saemian, Peyman; Sehatkashani, Saviz; Tajrishy, Massoud; Sorooshian, Armin

    Science of the total environment, 08/2018, Letnik: 633
    Journal Article

    Lake Urmia (LU) once was the second largest hypersaline lake in the world, covering up to 6000km2, but has undergone catastrophic desiccation in recent years resulting in loss of 90% of its area and extensive coverage by playas and marshlands that represent a source of salt and dust. This study examines daily Aerosol Optical Depth (AOD) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) between 2001 and 2015 over northwestern Iran, which encompasses LU. Intriguingly, salt emissions from the LU surface associated with ongoing desiccation do not drive the study region's AOD profile, whereas pollution transported from other regions and emissions around LU are more important. Signatures of increasing local crustal emissions are most evident outside of the peak dust season (January, February, and October) and on the periphery of LU. AOD has generally increased in the latter half of the study period with the onset of the AOD ramp-up starting a month earlier in the spring season when comparing 2009–2015 versus earlier years. Results indicate that suppression of emissions on the LU border is critical as the combined area of salt and salty soil bodies around LU have increased by two orders of magnitude in the past two decades, and disturbing these areas via activities such as grazing and salt harvesting on the lake surface can have more detrimental impacts on regional pollution as compared to benefits. These results have important implications for public health, climate, the hydrological cycle, and pollution control efforts. Display omitted •AOD characteristics examined over Lake Urmia in northwestern Iran between 2001 and 2015.•No significant relationship found between lake water level and AOD.•Interannual AOD variability driven mainly by transport from upwind regions.•Enhanced emissions from salty/soil areas around the lake in the latter years•Activities like grazing can disturb the remaining playa and lead to salt emissions.