DIKUL - logo
E-viri
Celotno besedilo
  • Synthesis of antihydrogen a...
    Kuroda, Naofumi; Enomoto, Yoshinori; Michishio, Koji; Kim, Chanhyoun; Higaki, Hiroyuki; Nagata, Yugo; Kanai, Yasuyuki; Torii, Hiroyuki A.; Corradini, Maurizzio; Leali, Marco; Lodi-Rizzini, Evandro; Mascagna, Valerio; Venturelli, Luca; Zurlo, Nicola; Fujii, Koki; Ohtsuka, Miki; Tanaka, Kazuo; Imao, Hiroshi; Nagashima, Yasuyuki; Matsuda, Yasuyuki; Juhász, Bertalan; Widmann, Eberhard; Mohri, Akihiro; Yamazaki, Yasunori

    EXA 2011
    Book Chapter

    ASACUSA collaboration has been making a path to realize high precision microwave spectroscopy of ground-state hyperfine transitions of antihydrogen atom in flight for stringent test of the CPT symmetry. Recently, we have succeeded in synthesizing our first cold antihydrogen atoms employing a CUSP trap. It is expected that synthesized antihydrogen atoms in the low-field-seeking states are preferentially focused along the cusp magnetic field axis whereas those in the high-field-seeking states are not focused, resulting in the formation of a spin-polarized antihydrogen beam. We report the recent results of antihydrogen atom synthesis and beam production developed with the CUSP trap.