UNI-MB - logo
UMNIK - logo
 
E-resources
Full text
Peer reviewed
  • Interleukin-17 and lung hos...
    Ye, P; Garvey, P B; Zhang, P; Nelson, S; Bagby, G; Summer, W R; Schwarzenberger, P; Shellito, J E; Kolls, J K

    American journal of respiratory cell and molecular biology, 09/2001, Volume: 25, Issue: 3
    Journal Article

    Bacterial pneumonia remains an important cause of morbidity and mortality worldwide, especially in immune-compromised patients. Cytokines and chemokines are critical molecules expressed in response to invading pathogens and are necessary for normal lung bacterial host defenses. Here we show that interleukin (IL)-17, a novel cytokine produced largely by CD4+ T cells, is produced in a compartmentalized fashion in the lung after challenge with Klebsiella pneumoniae. Moreover, overexpression of IL-17 in the pulmonary compartment using a recombinant adenovirus encoding murine IL-17 (AdIL-17) resulted in the local induction of tumor necrosis factor-alpha, IL-1beta, macrophage inflammatory protein-2, and granulocyte colony-stimulating factor (G-CSF); augmented polymorphonuclear leukocyte recruitment; and enhanced bacterial clearance and survival after challenge with K. pneumoniae. However, simultaneous treatment with AdIL-17 provided no survival benefit after intranasal K. pneumoniae challenge. These data show that IL-17 may have a role in priming for enhanced chemokine and G-CSF production in the context of lung infection and that optimally timed gene therapy with IL-17 may augment host defense against bacterial pneumonia.