UNI-MB - logo
UMNIK - logo
 
E-resources
Full text
Peer reviewed
  • Co-vacancy-rich CO1-xS nano...
    Zhu, Jiaqing; Ren, Zhiyu; Du, Shichao; Xie, Ying; Wu, Jun; Meng, Huiyuan; Xue, Yuzhu; Fu, Honggang

    Nano research, 05/2017, Volume: 10, Issue: 5
    Journal Article

    Developing cost-efficient electrocatalysts for oxygen evolution is vital for the viability of H2 energy generated via electrolytic water. Engineering favorable defects on the electrocatalysts to provide accessible active sites can boost the sluggish reaction thermodynamics or kinetics. Herein, Col_xS nanosheets were designed and grown on reduced graphene oxide (rGO) by controlling the successive two-step hydrothermal reaction. A belt-like cobalt-based precursor was first formed with the assistance of ammonia and rGO, which were then sulfurized into Col_xS by L-cysteine at a higher hydrothermal temperature. Because of the non-stoichiometric defects and ultrathin sheet-like structure, additional cobalt vacancies (V~o) were formed/exposed on the catalyst surface, which expedited the charge diffusion and increased the electroactive surface in contact with the electrolyte. The resulting Col_xS/rGO hybrids exhibited an overpotential as low as 310 mV at 10 mA.cm-2 in an alkaline electrolyte for the oxygen evolution reaction (OER). Density functional theory calculations indicated that the Vco on the Col_xS/rGO hybrid functioned as catalytic sites for enhanced OER. They also reduced the energy barrier for the transformation of intermediate oxygenated species, promoting the OER thermodynamics.