UNI-MB - logo
UMNIK - logo
 
E-resources
Full text
Peer reviewed
  • Role of secondary structure...
    Formaggio, Fernando; Barazza, Alessandra; Bertocco, Andrea; Toniolo, Claudio; Broxterman, Quirinus B; Kaptein, Bernard; Brasola, Elena; Pengo, Paolo; Pasquato, Lucia; Scrimin, Paolo

    Journal of organic chemistry, 05/2004, Volume: 69, Issue: 11
    Journal Article

    In a recent series of papers, Miller and co-workers were able to show that His(pi-Me)-based, terminally protected peptides are potent catalysts of the asymmetric acyl transfer reaction, useful for the kinetic resolution of alcohols. In a structure-supporting solvent, one of the most active compounds, an Aib-containing tetrapeptide, is folded in a doubly intramolecularly H-bonded beta-hairpin motif incorporating a type-II' beta-turn conformation. In this work, we have expanded the study of the Miller tetrapeptide by examining a set of analogues and shorter sequences (dipeptide amides), characterized by chiral C(alpha)-tetrasubstituted alpha-amino acids of diverging bulkiness and optical configuration. Peptide synthesis in solution, conformational analysis by FT-IR absorption and (1)H NMR techniques, and screening of catalytic activity as well have been performed. Our results confirm the close relationship between the beta-hairpin 3D-structure and the catalytic activity of the peptides. A tetrapeptide analogue slightly more selective than the Miller compound has been found. However, the terminally protected, industrially more appealing, dipeptide amides are poorly effective.