UNI-MB - logo
UMNIK - logo
 
E-resources
Full text
Peer reviewed Open access
  • The use of Olaparib (AZD228...
    Tahara, Makiko; Inoue, Takeshi; Sato, Futoshi; Miyakura, Yasuyuki; Horie, Hisanaga; Yasuda, Yoshikazu; Fujii, Hirofumi; Kotake, Kenjiro; Sugano, Kokichi

    Molecular cancer therapeutics, 05/2014, Volume: 13, Issue: 5
    Journal Article

    Potent application of topoisomerase I inhibitor plus PARP inhibitor has been suggested to be an effective strategy for cancer therapy. Reportedly, mismatch repair (MMR)-deficient colon cancer cells are sensitive to topoisomerase I inhibitor, presumably due to microsatellite instability (MSI) of the MRE11 locus. We examined the synergy of SN-38, an active metabolite of irinotecan, in combination with the PARP inhibitor olaparib in colon cancer cells showing different MMR status, such as MSI or microsatellite stable (MSS) phenotype. Treatment with SN-38 and olaparib in combination almost halved the IC50 of SN-38 for a broad spectrum of colon cancer cells independent of the MMR status. Furthermore, olaparib potentiated S-phase-specific double-strand DNA breaks (DSB) induced by SN-38, which is followed by Rad51 recruitment. siRNA-mediated knockdown of Rad51, but not Mre11 or Rad50, increased the sensitivity to olaparib and/or SN-38 treatment in colon cancer cells. In vivo study using mouse xenograft demonstrated that olaparib was effective to potentiate the antitumor effect of irinotecan. In conclusion, olaparib shows a synergistic effect in colon cancer cells in combination with SN-38 or irinotecan, potentiated by the Rad51-mediated HR pathway, irrespective of the Mre11-mediated failure of the MRN complex. These results may contribute to future clinical trials using PARP inhibitor plus topoisomerase I inhibitor in combination. Furthermore, the synergistic effect comprising topoisomerase I-mediated DNA breakage-reunion reaction, PARP and Rad51-mediated HR pathway suggests the triple synthetic lethal pathways contribute to this event and are applicable as a potential target for future chemotherapy.