UNI-MB - logo
UMNIK - logo
 
E-resources
Full text
Peer reviewed
  • Genome‐wide association map...
    Amano, T.; Onogi, A.; Yamada, F.; Kawai, M.; Shirai, K.; Ueda, J.

    Animal genetics, October 2018, Volume: 49, Issue: 5
    Journal Article

    Summary Previously, a single nucleotide polymorphism (SNP) related to gait type was identified at position 22 999 655 of chromosome 23 in the coding region of DMRT3 (DMRT3:Ser301Ter) by showing that a cytosine (C) to adenine (A) mutation of this SNP induced pace in the Icelandic horse. We investigated the effect of DMRT3:Ser301Ter on the gait of Hokkaido Native Horses, a Japanese native breed, and examined genetic factors other than DMRT3 by exploring genome‐wide SNPs related to gait determination. All animals exhibiting pace were AA for DMRT3:Ser301Ter, confirming the association of DMRT3:Ser301Ter with gait determination; however, 14.3% of the animals exhibiting trot also had AA for DMRT3:Ser301Ter, suggesting the presence of another factor(s) cooperatively working with DMRT3:Ser301Ter for gait determination. SNPs on chromosomes 13 and 23 were detected by genome‐wide association analysis (false discovery rate <0.05), although SNPs on chromosome 23 were all located in the vicinity of DMRT3:Ser301Ter, confirming the association with DMRT3. A genome‐wide association study targeting only animals with AA for DMRT3:Ser301Ter to examine genetic factors cooperatively working with DMRT3:Ser301Ter for gait determination suggested associations of 23 SNPs on six chromosomes. In a series of analyses of the effect of a maternal factor (dam's gait) on gait determination, the effect was suggested in comparison of the frequencies of exhibiting pace in gait checks in only two animal groups having dams with different DMRT3:Ser301Ter genotypes (P < 0.05), suggesting that the gait of the dam does not have a major effect on whether progeny homozygous for the DMRT3:Ser301Ter mutation will preferentially pace or trot.