UNI-MB - logo
UMNIK - logo
 
E-resources
Full text
Peer reviewed
  • Preparation, Characterizati...
    Meikle, Thomas G; Dyett, Brendan P; Strachan, Jamie B; White, Jacinta; Drummond, Calum J; Conn, Charlotte E

    ACS applied materials & interfaces, 02/2020, Volume: 12, Issue: 6
    Journal Article

    Herein, we demonstrate a method for the functionalization of cubic phase lipid nanoparticles (cubosomes) with a series of magnetite (Fe3O4), copper oxide (Cu2O), and silver (Ag) nanocrystals, with prospective applications across a wide range of fields, including antimicrobial treatments. The resulting cubosomes are characterized using small-angle X-ray scattering and dynamic light scattering, demonstrating the retention of a typical cubic phase structure and particle size following nanocrystal encapsulation at concentrations up to 20% w/w. Cryogenic transmission electron microscopy reveals significant loading and association of each nanocrystal type with both monoolein- and phytantriol-based cubosomes. The antibiotic potential of these hybrid nanoparticles is demonstrated for the first time; cubosomes with embedded silver nanocrystals display a high level of antimicrobial activity against both Gram-positive and Gram-negative bacteria, with observed minimum inhibitory concentration values ranging from 15.6–250 μg/mL. Lastly, total internal reflection fluorescence microscopy is used to visualize cubosome–bacteria interactions, suggesting the involvement of particle interactions as a delivery mechanism.