UNI-MB - logo
UMNIK - logo
 
E-resources
Full text
Peer reviewed
  • Use of Residual Yeast Cell ...
    Peltzer, M. A.; Salvay, A. G.; Delgado, J. F.; de la Osa, O.; Wagner, J. R.

    Food and bioprocess technology, 11/2018, Volume: 11, Issue: 11
    Journal Article

    The use of renewable resources to develop food contact materials, such as proteins or polysaccharides, and the use of industrial residues for alternative applications are trending topics for researchers and the industry. Yeast cell wall (YCW) is a very rich waste from the yeast extract industry. Due to this, the aim of this work is to develop new biodegradable films based on residual YCW and the study of the effect of plasticization on films properties. Residual YCW was used as base matrix and different concentrations of glycerol (0, 15, 25 and 35 wt%) were tested to obtain casted films. Homogeneous and yellow-brownish films, which allow seeing through them, were obtained from the YCW. Total soluble matter demonstrated that glycerol enhanced solubility of films but glycerol was retained in the polymer matrix. TGA studies indicated that YCW films exhibited substantial degradation at temperatures above 180 °C. FTIR spectra of the casted films were representative of yeast cell wall material and SEM photographs showed that cell wall maintained their shape after film formation. As expected, Young’s modulus and tensile strength values were decreased with the increasing amount of glycerol. However, elongation at break was not increased further with higher concentration of plasticizer and the addition of 15 wt% of glycerol seemed to be enough to improve mechanical properties. The linear increment of water vapour permeability with glycerol concentration was produced by the increase in water solubility in the film. Therefore, based on solubility in water, mechanical, and barrier properties, it is possible to propose yeast cells residues as film-forming material for biodegradable film developments.