UNI-MB - logo
UMNIK - logo
 
E-resources
Peer reviewed Open access
  • Recognition of Multivalent ...
    Nady, Nataliya; Lemak, Alexander; Walker, John R.; Avvakumov, George V.; Kareta, Michael S.; Achour, Mayada; Xue, Sheng; Duan, Shili; Allali-Hassani, Abdellah; Zuo, Xiaobing; Wang, Yun-Xing; Bronner, Christian; Chédin, Frédéric; Arrowsmith, Cheryl H.; Dhe-Paganon, Sirano

    The Journal of biological chemistry, 07/2011, Volume: 286, Issue: 27
    Journal Article

    Histone modifications and DNA methylation represent two layers of heritable epigenetic information that regulate eukaryotic chromatin structure and gene activity. UHRF1 is a unique factor that bridges these two layers; it is required for maintenance DNA methylation at hemimethylated CpG sites, which are specifically recognized through its SRA domain and also interacts with histone H3 trimethylated on lysine 9 (H3K9me3) in an unspecified manner. Here we show that UHRF1 contains a tandem Tudor domain (TTD) that recognizes H3 tail peptides with the heterochromatin-associated modification state of trimethylated lysine 9 and unmodified lysine 4 (H3K4me0/K9me3). Solution NMR and crystallographic data reveal the TTD simultaneously recognizes H3K9me3 through a conserved aromatic cage in the first Tudor subdomain and unmodified H3K4 within a groove between the tandem subdomains. The subdomains undergo a conformational adjustment upon peptide binding, distinct from previously reported mechanisms for dual histone mark recognition. Mutant UHRF1 protein deficient for H3K4me0/K9me3 binding shows altered localization to heterochromatic chromocenters and fails to reduce expression of a target gene, p16INK4A, when overexpressed. Our results demonstrate a novel recognition mechanism for the combinatorial readout of histone modification states associated with gene silencing and add to the growing evidence for coordination of, and cross-talk between, the modification states of H3K4 and H3K9 in regulation of gene expression.