UNI-MB - logo
UMNIK - logo
 
E-resources
Full text
Peer reviewed
  • Fast separation of triterpe...
    Lesellier, E.; Destandau, E.; Grigoras, C.; Fougère, L.; Elfakir, C.

    Journal of Chromatography A, 12/2012, Volume: 1268
    Journal Article

    ► Description of a method development in SFC. ► Improvement of the triterpenoid separation in isocratic SFC. ► Varied and complementary selectivity are obtained with different columns. ► ELSD provides higher response coefficients than UV for triterpenoids. ► Analyses of bio-active compounds present in food by-products is shown by SFC-ELSD. The screening of plant material, the chemical composition, the abundance and the biological activity of triterpenoids are of a major economical importance. The classical analytical methods, such as TLC, GC, and HPLC are either little resolutive, or require derivatization steps, or fail in sensitivity. The supercritical fluid chromatography/evaporative light scattering detector (SFC/ELSD) coupling provides high resolution, fast analysis and higher responses for the analysis of triterpenoids. After the initial screening of seven stationary phases to select the well suited one, analytical conditions (modifier percentage, from 10 to 3%; backpressure (from 12 to 18MPa) and temperature (from 15 to 25°C) were studied to improve the separation, and ELSD detection of a standard mixture composed of 8 triterpenoids (oleanolic acid, erythrodiol, β-amyrin, ursolic acid, uvaol, betulinic acid, betulin, lupeol). Applied to apple pomace extracts, this method allows the separation of about 15 triterpenoid compounds, in less than 20min, with isocratic conditions. Moreover, the ELSD response is dramatically higher than the one provided by UV detection, and avoids derivatization steps. An attempt to identify some compounds was done by collecting chromatographic peaks and further analyzing them with mass spectrometry. Complete identification or molecular formula could be proposed for 11 compounds. However, due to the presence of position and orientation isomers the absolute identification remains difficult, despite some retention rules deduced from the standard analysis.