UNI-MB - logo
UMNIK - logo
 
E-resources
Full text
Peer reviewed
  • Structural transformation o...
    Sroka-Bartnicka, Anna; Borkowski, Leszek; Ginalska, Grazyna; Ślósarczyk, Anna; Kazarian, Sergei G.

    Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 01/2017, Volume: 171
    Journal Article

    Hydroxyapatite and carbonate-substituted hydroxyapatite are widely used in bone tissue engineering and regenerative medicine. Both apatite materials were embedded into recently developed ceramic/polymer composites, subjected to Simulated Body Fluid (SBF) for 30days and characterized using ATR-FTIR spectroscopic imaging to assess their behaviour and structures. The specific aim was to detect the transition phases between both types of hydroxyapatite during the test and to analyze the surface modification caused by SBF. ATR-FTIR spectroscopic imaging was successfully applied to characterise changes in the hydroxyapatite lattice due to the elastic properties of the scaffolds. It was observed that SBF treatment caused a replacement of phosphates in the lattice of non-substituted hydroxyapatite by carbonate ions. A detailed study excluded the formation of pure A type carbonate apatite. In turn, CO32– content in synthetic carbonate-substituted hydroxyapatite decreased. The usefulness of ATR-FTIR spectroscopic imaging studies in the evaluation of elastic and porous β-glucan hydroxyapatite composites has been demonstrated. Display omitted •Transition phases between two apatites were detected by use of ATR- FTIR spectroscopic imaging.