UNI-MB - logo
UMNIK - logo
 
E-resources
Full text
Peer reviewed
  • A mathematical model for st...
    Protopapas, Eleftherios; Vafeas, Panayiotis; Hadjinicolaou, Maria

    Applied numerical mathematics, 5/2024
    Journal Article

    The susceptibility of the human Red Blood Cells (RBCs) under the action of magnetic fields, either serves as a biomarker in medical tests, e.g.. Magnetic Resonance Imaging, Nuclear Magnetic Resonance, Magnetoencephalography, or it is used in diagnostic and therapeutical processes, e.g.. magnetophoresis for cell sorting. In the present manuscript we provide analytical expressions for the magnetic potential and the magnetic field strength vector, when a magnetic field is applied to a RBC, modeled as a two-layered inverted spheroid. We introduce this way in the model the biconcave shape of the RBC and its structure (membrane and cytocol) in a more realistic representation, as until now, the RBC's shape was considered either as a sphere or a spheroid. The solution inside the RBC is obtained in R-separable form in terms of Legendre functions of the first and of the second kind and cyclic trigonometric functions, by applying appropriate boundary conditions on each layer. Our results reveal a non-uniform magnetic field inside the RBC. Parametric study of the solution, for various values of the physical properties of the RBC, is also provided, demonstrating the diamagnetic or the paramagnetic property of the RBC, which is strongly related to the health condition of the blood. The obtained solution may also serve for the justification of experimental results.