UNI-MB - logo
UMNIK - logo
 
E-resources
Full text
Peer reviewed
  • Upcycling of CO2 into susta...
    Gao, Ruxing; Wang, Lei; Zhang, Leiyu; Zhang, Chundong; Jun, Ki-Won; Ki Kim, Seok; Park, Hae-Gu; Zhao, Tiansheng; Gao, Ying; Zhu, Yuezhao; Wan, Hui; Guan, Guofeng

    Fuel (Guildford), 10/2022, Volume: 325
    Journal Article

    •Two PtL/PtG hybrid processes are proposed for upcycling CO2 into green fuels.•CO2 is converted through RWGS, Fe-based FTS and/or CO2 methanation.•A comparative analysis of the present & previous PtL/PtG processes is conducted.•The syncrude production of the present PtL/PtG process has been increased by 30.95%.•The total product revenue of the present PtL/PtG process has been increased by 12.73%. Power-to-X (PtX) technologies, especially for the Power-to-Liquids (PtL) and Power-to-Gas (PtG) have attracted extensive attention recently, as promising pathways for carbon upcycling via converting CO2 into high-value products including liquid fuels and substitute natural gas (SNG). Herein, aiming at further improving the PtX process efficiency, we proposed two novel PtL/PtG hybrid processes, namely an indirect process (with RWGS unit) and a direct process (without RWGS unit) by integrating Fe-based Fischer-Tropsch synthesis (FTS) and olefin oligomerization technologies, which co-produce syncrude and SNG. Both process simulation and techno-economic analysis were implemented to evaluate the overall process performances, through various indicators involving technical indicators (e.g., syncrude production, energy efficiency, and net CO2 reduction), and economic indicators such as total capital investment, net CO2 reduction costs together with total product costs. Both proposed PtL/PtG processes are efficient in converting CO2 into valuable hydrocarbon fuels, and the syncrude production and total product revenues of indirect process are 2.35–14.58% and 7.55–8.51% higher than those of the direct process, respectively. Whereas, the direct process has lower net CO2 reduction cost of 206.09 $/tonne CO2. Moreover, the present PtL/PtG processes have higher syncrude production and total product revenues than those of our previous studies including a direct PtL/PtG process coupled with Fe-based FTS and two indirect PTL/PTG processes combined with RWGS and Fe/Co-based FTS reaction, with rates of 30.95 and 12.73% at most.