UNI-MB - logo
UMNIK - logo
 
E-resources
Peer reviewed Open access
  • High‐frequency dissolved or...
    Vaughan, M. C. H.; Bowden, W. B.; Shanley, J. B.; Vermilyea, A.; Sleeper, R.; Gold, A. J.; Pradhanang, S. M.; Inamdar, S. P.; Levia, D. F.; Andres, A. S.; Birgand, F.; Schroth, A. W.

    Water resources research, July 2017, 2017-07-00, 20170701, Volume: 53, Issue: 7
    Journal Article

    Storm events dominate riverine loads of dissolved organic carbon (DOC) and nitrate and are expected to increase in frequency and intensity in many regions due to climate change. We deployed three high‐frequency (15 min) in situ absorbance spectrophotometers to monitor DOC and nitrate concentration for 126 storms in three watersheds with agricultural, urban, and forested land use/land cover. We examined intrastorm hysteresis and the influences of seasonality, storm size, and dominant land use/land cover on storm DOC and nitrate loads. DOC hysteresis was generally anticlockwise at all sites, indicating distal and plentiful sources for all three streams despite varied DOC character and sources. Nitrate hysteresis was generally clockwise for urban and forested sites, but anticlockwise for the agricultural site, indicating an exhaustible, proximal source of nitrate in the urban and forested sites, and more distal and plentiful sources of nitrate in the agricultural site. The agricultural site had significantly higher storm nitrate yield per water yield and higher storm DOC yield per water yield than the urban or forested sites. Seasonal effects were important for storm nitrate yield in all three watersheds and farm management practices likely caused complex interactions with seasonality at the agricultural site. Hysteresis indices did not improve predictions of storm nitrate yields at any site. We discuss key lessons from using high‐frequency in situ optical sensors. Key Points An improved hysteresis index revealed remarkable variation in storm dynamics for 126 storms in watersheds with varied land use/land cover Seasonality influenced storm nitrate loading; interactions between farm practices and seasonal dynamics were captured by sensors Sites had generally anticlockwise storm hysteresis for DOC, though storm nitrate hysteresis direction varied by land use/land cover