UNI-MB - logo
UMNIK - logo
 
E-resources
Peer reviewed Open access
  • Nanoscale imaging of buried...
    Blanco-Roldán, C; Quirós, C; Sorrentino, A; Hierro-Rodríguez, A; Álvarez-Prado, L M; Valcárcel, R; Duch, M; Torras, N; Esteve, J; Martín, J I; Vélez, M; Alameda, J M; Pereiro, E; Ferrer, S

    Nature communications, 09/2015, Volume: 6, Issue: 1
    Journal Article

    Advances in nanoscale magnetism increasingly require characterization tools providing detailed descriptions of magnetic configurations. Magnetic transmission X-ray microscopy produces element specific magnetic domain images with nanometric lateral resolution in films up to ∼100 nm thick. Here we present an imaging method using the angular dependence of magnetic contrast in a series of high resolution transmission X-ray microscopy images to obtain quantitative descriptions of the magnetization (canting angles relative to surface normal and sense). This method is applied to 55-120 nm thick ferromagnetic NdCo5 layers (canting angles between 65° and 22°), and to a NdCo5 film covered with permalloy. Interestingly, permalloy induces a 43° rotation of Co magnetization towards surface normal. Our method allows identifying complex topological defects (merons or ½ skyrmions) in a NdCo5 film that are only partially replicated by the permalloy overlayer. These results open possibilities for the characterization of deeply buried magnetic topological defects, nanostructures and devices.