UNI-MB - logo
UMNIK - logo
 
E-resources
Full text
Peer reviewed Open access
  • Effect of Heteroatom Doping...
    Jiang, Xiukun; Xin, Yan; He, Bijiao; Zhang, Fang; Tian, Huajun

    Materials, 03/2024, Volume: 17, Issue: 6
    Journal Article

    Lithium iron phosphate (LiFePO4, LFP), an olivine–type cathode material, represents a highly suitable cathode option for lithium–ion batteries that is widely applied in electric vehicles and renewable energy storage systems. This work employed the ball milling technique to synthesize LiFePO4/carbon (LFP/C) composites and investigated the effects of various doping elements, including F, Mn, Nb, and Mg, on the electrochemical behavior of LFP/C composite cathodes. Our comprehensive work indicates that optimized F doping could improve the discharge capacity of the LFP/C composites at high rates, achieving 113.7 mAh g−1 at 10 C. Rational Nb doping boosted the cycling stability and improved the capacity retention rate (above 96.1% after 100 cycles at 0.2 C). The designed Mn doping escalated the discharge capacity of the LFP/C composite under a low temperature of −15 °C (101.2 mAh g−1 at 0.2 C). By optimizing the doping elements and levels, the role of doping as a modification method on the diverse properties of LFP/C cathode materials was effectively explored.