UNI-MB - logo
UMNIK - logo
 
E-resources
Full text
Peer reviewed
  • Graphitic Carbon Conformal ...
    Liu, Hao; Li, Wei; Shen, Dengke; Zhao, Dongyuan; Wang, Guoxiu

    Journal of the American Chemical Society, 10/2015, Volume: 137, Issue: 40
    Journal Article

    Rational design and controllable synthesis of TiO2 based materials with unique microstructure, high reactivity, and excellent electrochemical performance for lithium ion batteries are crucially desired. In this paper, we developed a versatile route to synthesize hollow TiO2/graphitic carbon (H-TiO2/GC) spheres with superior electrochemical performance. The as-prepared mesoporous H-TiO2/GC hollow spheres present a high specific surface area (298 m2 g–1), a high pore volume (0.31 cm3 g–1), a large pore size (∼5 nm), well-defined hollow structure (monodispersed size of 600 nm and inner diameter of ∼400 nm, shell thickness of 100 nm), and small nanocrystals of anatase TiO2 (∼8 nm) conformably encapsulated in ultrathin graphitic carbon layers. As a result, the H-TiO2/GC hollow spheres achieve excellent electrochemical reactivity and stability as an anode material for lithium ion batteries. A high specific capacity of 137 mAh g–1 can be achieved up to 1000 cycles at a current density of 1 A g–1 (5 C). We believe that the mesoporous H-TiO2/GC hollow spheres are expected to be applied as a high-performance electrode material for next generation lithium ion batteries.