UNI-MB - logo
UMNIK - logo
 
E-resources
Peer reviewed Open access
  • Twinned Growth of Metal‐Fre...
    Schwarz, Dana; Noda, Yu; Klouda, Jan; Schwarzová‐Pecková, Karolina; Tarábek, Ján; Rybáček, Jiří; Janoušek, Jiří; Simon, Frank; Opanasenko, Maksym V.; Čejka, Jiří; Acharjya, Amitava; Schmidt, Johannes; Selve, Sören; Reiter‐Scherer, Valentin; Severin, Nikolai; Rabe, Jürgen P.; Ecorchard, Petra; He, Junjie; Polozij, Miroslav; Nachtigall, Petr; Bojdys, Michael J.

    Advanced materials 29, Issue: 40
    Journal Article

    Design and synthesis of ordered, metal‐free layered materials is intrinsically difficult due to the limitations of vapor deposition processes that are used in their making. Mixed‐dimensional (2D/3D) metal‐free van der Waals (vdW) heterostructures based on triazine (C3N3) linkers grow as large area, transparent yellow‐orange membranes on copper surfaces from solution. The membranes have an indirect band gap (Eg,opt = 1.91 eV, Eg,elec = 1.84 eV) and are moderately porous (124 m2 g−1). The material consists of a crystalline 2D phase that is fully sp2 hybridized and provides structural stability, and an amorphous, porous phase with mixed sp2–sp hybridization. Interestingly, this 2D/3D vdW heterostructure grows in a twinned mechanism from a one‐pot reaction mixture: unprecedented for metal‐free frameworks and a direct consequence of on‐catalyst synthesis. Thanks to the efficient type I heterojunction, electron transfer processes are fundamentally improved and hence, the material is capable of metal‐free, light‐induced hydrogen evolution from water without the need for a noble metal cocatalyst (34 µmol h−1 g−1 without Pt). The results highlight that twinned growth mechanisms are observed in the realm of “wet” chemistry, and that they can be used to fabricate otherwise challenging 2D/3D vdW heterostructures with composite properties. Mixed‐dimensional (2D/3D) layered, van der Waals heterostructures based on triazine linkers are produced in a facile, one‐pot, “wet” chemistry process. Macroscopic films of the material grow via a twinned mechanism—first, the 2D crystalline phase, then the 3D polymer—on a copper support that acts both as a catalyst and template, and form an efficient type I heterojunction.