UNI-MB - logo
UMNIK - logo
 
E-resources
Peer reviewed Open access
  • Observation of an Antimatte...
    Anderson, B D; Balewski, J; Baumgart, S; Betts, R R; Bichsel, H; Bland, L C; Calderon, M; Catu, O; Cebra, D; Chaloupka, P; Chen, J H; Chen, J Y; Choi, K E; Corliss, R; Crawford, H J; Davila Leyva, A; De Silva, L C; Derradi de Souza, R; Elnimr, M; Eppley, G; Fachini, P; Filip, P; Fine, V; Guryn, W; Han, L-X; Heinz, M; Jacobs, W W; Jin, F; Kabana, S; Kiryluk, J; Koralt, I; Kravtsov, P; Krueger, K; Landgraf, J M; Lebedev, A; Lednicky, R; Li, N; Li, W; Li, Z; Liu, F; Lu, Y; Margetis, S; Matis, H S; McDonald, D; Meschanin, A; Milner, R; Mohanty, B; Morozov, D A; Nandi, B K; Nelson, J M; Nogach, L V; Nurushev, S B; Page, B S; Plyku, D; Poskanzer, A M; Pruneau, C; Pruthi, N K; Raniwala, R; Roberts, J B; Romero, J L; Sakuma, T; Sandweiss, J; Scharenberg, R P; Schuster, T R; Seger, J; Seyboth, P; Shahaliev, E; Shi, S S; Singaraju, R N; Skoby, M J; Sorensen, P; Sowinski, J; Sumbera, M; Sun, Y; Szanto de Toledo, A; Tram, V N; Tsai, O D; Underwood, D G; Videbaek, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Walker, M; Wang, F; Wang, G; Webb, G; Wieman, H; Xie, W; Xu, H; Xu, N; Xu, W; Xu, Y; Xu, Z; Yoo, I-K; Yue, Q; Zhang, S; Zhang, X P; Zhu, Y H; Zoulkarneev, R

    Science (American Association for the Advancement of Science), 04/2010, Volume: 328, Issue: 5974
    Journal Article

    Stem cells support tissue maintenance by balancing self-renewal and differentiation. In mice, it is believed that a homogeneous stem cell population of single spermatogonia supports spermatogenesis, and that differentiation, which is accompanied by the formation of connected cells (cysts) of increasing length, is linear and nonreversible. We evaluated this model with the use of lineage analysis and live imaging, and found that this putative stem cell population is not homogeneous. Instead, the stem cell pool that supports steady-state spermatogenesis is contained within a subpopulation of single spermatogonia. We also found that cysts are not committed to differentiation and appear to recover stem cell potential by fragmentation, and that the fate of individual spermatogonial populations was markedly altered during regeneration after damage. Thus, there are multiple and reversible paths from stem cells to differentiation, and these may also occur in other systems.