UNI-MB - logo
UMNIK - logo
 
E-resources
Peer reviewed Open access
  • Development and Evaluation ...
    Smith, Eric L.; Staehr, Mette; Masakayan, Reed; Tatake, Ishan J.; Purdon, Terence J.; Wang, Xiuyan; Wang, Pei; Liu, Hong; Xu, Yiyang; Garrett-Thomson, Sarah C.; Almo, Steven C.; Riviere, Isabelle; Liu, Cheng; Brentjens, Renier J.

    Molecular therapy, 06/2018, Volume: 26, Issue: 6
    Journal Article

    B cell maturation antigen (BCMA) has recently been identified as an important multiple myeloma (MM)-specific target for chimeric antigen receptor (CAR) T cell therapy. In CAR T cell therapy targeting CD19 for lymphoma, host immune anti-murine CAR responses limited the efficacy of repeat dosing and possibly long-term persistence. This clinically relevant concern can be addressed by generating a CAR incorporating a human single-chain variable fragment (scFv). We screened a human B cell-derived scFv phage display library and identified a panel of BCMA-specific clones from which human CARs were engineered. Despite a narrow range of affinity for BCMA, dramatic differences in CAR T cell expansion were observed between unique scFvs in a repeat antigen stimulation assay. These results were confirmed by screening in a MM xenograft model, where only the top preforming CARs from the repeat antigen stimulation assay eradicated disease and prolonged survival. The results of this screening identified a highly effective CAR T cell therapy with properties, including rapid in vivo expansion (>10,000-fold, day 6), eradication of large tumor burden, and durable protection to tumor re-challenge. We generated a bicistronic construct including a second-generation CAR and a truncated-epithelial growth factor receptor marker. CAR T cell vectors stemming from this work are under clinical investigation. Human-scFv phage display library screening identified BCMA-specific clones for engineering human CARs. Repeat antigen stimulation predicted differential in vivo efficacy of CARs incorporating unique scFvs. Smith and colleagues’ lead CAR, which induced rapid T cell expansion, eradicated large tumor burden, and protected from tumor re-challenge in myeloma xenografts, is now under clinical investigation.