UNI-MB - logo
UMNIK - logo
 
E-resources
Peer reviewed Open access
  • A Multi-telescope Campaign ...
    Law, C. J.; Abruzzo, M. W.; Bassa, C. G.; Bower, G. C.; Burke-Spolaor, S.; Butler, B. J.; Cantwell, T.; Carey, S. H.; Chatterjee, S.; Cordes, J. M.; Demorest, P.; Dowell, J.; Fender, R.; Gourdji, K.; Grainge, K.; Hessels, J. W. T.; Hickish, J.; Kaspi, V. M.; Lazio, T. J. W.; McLaughlin, M. A.; Michilli, D.; Mooley, K.; Perrott, Y. C.; Ransom, S. M.; Razavi-Ghods, N.; Rupen, M.; Scaife, A.; Scott, P.; Scholz, P.; Seymour, A.; Spitler, L. G.; Stovall, K.; Tendulkar, S. P.; Titterington, D.; Wharton, R. S.; Williams, P. K. G.

    The Astrophysical journal, 11/2017, Volume: 850, Issue: 1
    Journal Article

    We present results of the coordinated observing campaign that made the first subarcsecond localization of a fast radio burst, FRB 121102. During this campaign, we made the first simultaneous detection of an FRB burst using multiple telescopes: the VLA at 3 GHz and the Arecibo Observatory at 1.4 GHz. Of the nine bursts detected by the Very Large Array at 3 GHz, four had simultaneous observing coverage at other observatories at frequencies from 70 MHz to 15 GHz. The one multi-observatory detection and three non-detections of bursts seen at 3 GHz confirm earlier results showing that burst spectra are not well modeled by a power law. We find that burst spectra are characterized by a ∼500 MHz envelope and apparent radio energy as high as 1040 erg. We measure significant changes in the apparent dispersion between bursts that can be attributed to frequency-dependent profiles or some other intrinsic burst structure that adds a systematic error to the estimate of dispersion measure by up to 1%. We use FRB 121102 as a prototype of the FRB class to estimate a volumetric birth rate of FRB sources Mpc−3 yr−1, where Nr is the number of bursts per source over its lifetime. This rate is broadly consistent with models of FRBs from young pulsars or magnetars born in superluminous supernovae or long gamma-ray bursts if the typical FRB repeats on the order of thousands of times during its lifetime.