UNI-MB - logo
UMNIK - logo
 
E-resources
Full text
Peer reviewed
  • 25th Anniversary Article: A...
    Dou, Letian; You, Jingbi; Hong, Ziruo; Xu, Zheng; Li, Gang; Street, Robert A.; Yang, Yang

    Advanced materials (Weinheim), December 10, 2013, Volume: 25, Issue: 46
    Journal Article

    Organic photovoltaic (OPV) technology has been developed and improved from a fancy concept with less than 1% power conversion efficiency (PCE) to over 10% PCE, particularly through the efforts in the last decade. The significant progress is the result of multidisciplinary research ranging from chemistry, material science, physics, and engineering. These efforts include the design and synthesis of novel compounds, understanding and controlling the film morphology, elucidating the device mechanisms, developing new device architectures, and improving large‐scale manufacture. All of these achievements catalyzed the rapid growth of the OPV technology. This review article takes a retrospective look at the research and development of OPV, and focuses on recent advances of solution‐processed materials and devices during the last decade, particular the polymer version of the materials and devices. The work in this field is exciting and OPV technology is a promising candidate for future thin film solar cells. In this review article, we take a retrospective look at the research and development in organic photovoltaics (OPVs), and focus on recent advances of solution‐processed materials and devices during the last decade, in particular the polymer version of the materials and devices. The work in this field is exciting and OPV technology is a promising candidate for future thin film solar cells.