UNI-MB - logo
UMNIK - logo
 
E-resources
Peer reviewed Open access
  • Background simulation for t...
    Bougamont, E; Colas, P; Dastgheibi-Fard, A; Derre, J; Giomataris, I; Gerbier, G; Gros, M; Magnier, P; Navick, X F; Salin, P; Savvidis, I; Tsiledakis, G; Vergados, J D

    Journal of physics. Conference series, 01/2013, Volume: 460, Issue: 1
    Journal Article

    The recently developed Spherical Proportional Counter 1 allows to instrument large target masses with good energy resolution and sub-keV energy threshold. The moderate cost of this detector, its simplicity and robustness, makes this technology a promising approach for many domains of physics and applications, like dark matter detection and low energy neutrino searches. Detailed Monte Carlo simulations are essential to evaluate the background level expected at the sub-keV energy regime. The simulated background here, it refers to the contribution of the construction material of the detector and the effect of the environmental gamma radiation. This detector due to its spherical shape could be also served as an optical photon detector provided it is equipped with PMTs, for Double Beta decay and Dark Matter searches. All calculations shown here are obtained using the FLUKA Monte Carlo code.