UNI-MB - logo
UMNIK - logo
 
E-resources
Full text
Peer reviewed
  • Chemically and biologically...
    Subedi, R.; Taupe, N.; Ikoyi, I.; Bertora, C.; Zavattaro, L.; Schmalenberger, A.; Leahy, J.J.; Grignani, C.

    The Science of the total environment, 04/2016, Volume: 550
    Journal Article

    This study evaluates the potential of manure-derived biochars in promoting plant growth and enhancing soil chemical and biological properties during a 150day pot experiment. Biochars from pyrolysis of poultry litter (PL) and swine manure (SM) at 400 and 600°C, and a commonly available wood chip (WC) biochar produced at high temperature (1000°C) were incorporated to silt-loam (SL) and sandy (SY) soils on a 2% dry soil weight basis. Ryegrass was sown and moisture was adjusted to 60% water filled pore space (WFPS). The PL400 and SM400 biochars significantly increased (p<0.05) shoot dry matter (DM) yields (SL soil) and enhanced nitrogen (N), phosphorus (P) and potassium (K) uptake by the plants in both soils, compared to the Control. All biochars significantly increased the soil carbon (C) contents compared to the Control. Total N contents were significantly greater for PL400 and PL600 treatments in both soils. The dehydrogenase activity (DA) significantly increased for PL400 and SM400 treatments and was positively correlated with the volatile matter (VM) contents of the biochars, while β-glucosidase activity (GA) decreased for the same treatments in both soils. All biochars significantly shifted (p≤0.05) the bacterial community structure compared to the Control. This study suggests that pyrolysis of animal manures can produce a biochar that acts as both soil amendment and an organic fertilizer as proven by increased NPK uptake, positive liming effect and high soil nutrient availability, while WC biochar could work only in combination with fertilizers (organic as well as mineral). Picture 1 Graphical abstract highlighting “Chemically and biologically-mediated fertilizing value of manure-derived biochars”. Display omitted •Low temperature manure biochars enhanced DM yield, NPK uptake, and soil properties.•More positive effects of biochars on acidic silt-loam than on alkaline sandy soil.•Wood biochar had no effect on DM yield but showed a good C sequestration potential.•All biochars shifted bacterial community structure and modified enzyme activities.